
1

CS-200
Computer Architecture

—
Part 2b. Processor, I/Os, and Exceptions

Inputs and Outputs

Paolo Ienne
<paolo.ienne@epfl.ch>

2

The Five Classic Components of a Computer

Control

Datapath

Memory

Out

In

Processor Interfaces

Memory

3

Single data bus
for read and write
(needs tristate!)

The CPU

CPU addr

rdata
wdata

ctrl

Memory
interface

A “very” sequential component
(but from now on we may

omit the clock in diagrams)

Signals like
CE = Circuit Enable = address is valid
WE = Write Enable = access is a store

≥32

32

32

4

Physical Memory Map

RAM
RAM

Code

Stack

Data

5

Connecting CPU and Memory

CPU addr

rdata
wdata

ce
we

RAMaddr

rdata
wdata

en
we

32
20bits 19..0

bits 31..20

= 0x800

0x800A 78FA

6

The Five Classic Components of a Computer

Control

Datapath

Memory

Out

In

Processor Interfaces

7

Input/Output Devices (I/Os)
Type Peripheral Data Rate

Human Interaction Keyboard ~kbps
Human Interaction Mouse ~kbps

Generic Serial Port (RS-232) 115.2 kbps (max)
Generic Parallel Port (LPT) 150 kbps
Generic USB 4.0 20-40 Gbps
Generic Bluetooth 5.0 2 Mbps
Generic PCIe 4.0 16 Gbps per lane
Storage SATA III (HDD/SSD) 6.0 Gbps
Storage NVMe (PCIe 4.0) 64 Gbps (4-lane)

Networking Ethernet (10BASE-T) 10 Mbps
Networking 10 Gigabit Ethernet (10GBASE-T) 10 Gbps
Networking Wi-Fi 6 (802.11ax) Up to 9.6 Gbps

Displays VGA (analog video) 0.6-1.5 Gbps (approx.)
Displays HDMI 2.1 48 Gbps

Optical Discs CD-ROM 150 KB/s (1x) - 7.68 MB/s (52x)
Optical Discs DVD-ROM 1.32 MB/s (1x) - 21.1 MB/s (16x)
Optical Discs Blu-ray 4.5 MB/s (1x) - 54 MB/s (12x)

8

Accessing I/Os: Port Mapped I/O (PMIO)

• Create a new interface similar to the memory one

CPU

addr
rdata

wdata

ctrl-mem

CE = Circuit Enable =
port number is valid

OE = Output Enable =
I/O access is an outputport

input
output

ctrl-IO

8-16

32

32
Maybe not 32 bits for we

have only a few peripherals…

New instructions (e.g., x86 but seldom used):

IN register, port
OUT port, register

e.g., IN AL, keyboard

9

Accessing I/Os: Memory Mapped I/O (MMIO)

RAM

LEDs

0x1000 0000

Display0x1000 0010 – 2F

Buttons
0x1000 0030

No special hardware needed in the CPU

No special instructions needed:

lui t0, 0x10000 # pointer to I/Os
sw t1, 0(t0) # write LEDs
lw t2, 0x30(t0) # read buttons

1
0

Accessing I/Os: Memory Mapped I/O (MMIO)

CPU

Addr Data Ctrl

Memory

Addr Data Ctrl

≥ 0x8000 0000
< 0xA000 0000

Write

Register
En D

Q

= 0x1000 0000

LEDs

Not
write

= 0x1000 0030

Buttons

1
1

Example:
A/D Converter

• Signals:
– Start (START): input; when active begins a new conversion
– Data Valid (/DV): output; when active, D7—D0 are valid
– Data (D7—D0): output; last conversion result

1
2

Example:
Simple Bus Interface

• Suppose that a 8-bit processor has the following signals:
– Address (A23—A0): output; address bus
– Data (D7—D0): input/output; data bus
– Address Strobe (/AS): output; signals the presence of a valid address on the

Address bus during a memory access cycle
– Read/Write (R//W): output; signal the direction of the data flow
– Data Acknowledge (/DTACK): input; must be activated at the end of a memory

access, when the written data have been latched or the read data are ready

• Similar but not identical to the MC68000
• Just an example but already more complex than busses described so far

(/DTACK)

1
3

Example:
Memory-Mapped Interface

• Connect the A/D converter described in the previous slide so that:
– Any access (R or W) to address 0xFFFFF0 starts a new conversion
– The Data Valid signal can be read by the processor at address 0xFFFFF4 (bit 0)
– The result of the conversion can be read by the processor at address 0xFFFFF8

1
4

What does /DTAC mean?

1
5

Circuit

1
6

What Does /DTAC Mean?

Start
Memory
Access

ADDR ALU_res
/AS  0

/DTACK == 0

/DTACK == 1

mem_type == 1

CLK

/AS

ADDR

/DTACK

1
7

A/D Converter: Circuit

1
8

Software

1
9

A/D Converter: Software

read_adc: lui t1, 0xfff
addi t1, t1, 0xff0 # t1 = 0xfffff0
sw zero, 0(t1) # start conversion

poll: lw t0, 4(t1) # t0 = DV signal
beqz t0, poll # wait until done

end: lw a0, 8(t1) # a0 = A/D output
ret

2
0

What Do These Tristate Buffers Do?

• What is their logic function?

A B

C

SS

C

A

0

B

1
S

A sort of “decentralized” multiplexer

If not controlled properly,
we get short circuits!

2
1

Your System in Lab B

Exactly the same function as the tristate
buffers in the previous example

2
2

Programmed I/Os

Many peripherals are more developed programmable systems and have a set of registers
which the processor reads and writes (a) to send and receive data and (b) to issue
commands and read the status

So
ur

ce
: H

eu
rin

g
&

 Jo
rd

an
, ©

 A
dd

iso
n

W
es

le
y

19
97

2
3

A Classic UART

• UART = Universal Asynchronous Receiver-Transmitter
• One of the simplest and most common communication peripherals,

typically used today to connect terminals to embedded devices
• Our UART has a simple programmed I/O interface with four registers:

– A control register for the processor to configure the UART
• Bit 7 must be set to 1 for the UART to be enabled
• Bits 2..0 configure the communication speed (e.g., 0b001 for 9600 baud)

– A status register for the processor to check the status of the UART
• Bit 1 is 1 if there are data available
• Bit 0 is 1 if the UART is ready to send data

– A data input register where the received data are available to the processor
– A data output register where the processor places data to send

2
4

A Classic UART
UART_CTRL_ADDR = 0x10000000 # UART status register address
UART_ENABLE_BIT = 0x80 # Enable bit (bit 7)
UART_SPEED_9600 = 0x01 # Speed setting for 9600 baud (4 bits, [3:0])
UART_STATUS_ADDR = 0x10000004 # UART status register address
TX_READY_BIT = 0x01 # Transmitter ready bit (bit 0)
UART_DATAIN_ADDR = 0x10000008 # UART data input (receive) register address
UART_DATAOUT_ADDR = 0x1000000C # UART data output (send) register address

send_string:
li t0, UART_CTRL_ADDR # Get UART control address
li t1, UART_STATUS_ADDR # Get UART status address
li t2, UART_DATAOUT_ADDR # Get UART data address
li t3, UART_ENABLE_BIT # Get enable bit (0x80)
li t4, UART_SPEED_9600 # Get speed setting (0x01)
or t4, t3, t4 # Combine enable and speed bits
sw t4, 0(t0) # Configure using the UART control register

next_char:
lb t5, 0(a0) # Load first byte of the string
beqz t5, finish # If byte is zero (null terminator), finish

check_tx_ready:
lw t6, 0(t1) # Load UART status register
andi t6, t6, TX_READY_BIT # Check if TX_READY_BIT is set
beqz t6, check_tx_ready # If not ready, loop back and check again

sw t5, 0(t2) # Store the character in UART data register
addi a0, a0, 1 # Increment string pointer (move to next char)
j next_char # Jump back to send the next character

finish:
ret # Return when the string is done

Configure and enable the UART

Wait until we can send
a new character…

…and send it

2
5

I/O Polling

• How do we know if a peripheral has data for us (key pressed, packet arrived, etc.)?

• Very expensive: if the device is fast and requires immediate action, the processor
must spend too much time to check frequently

CPU

Memory
I/O

device
I/O

device
I/O

device
I/O

device

Keep visiting regularly
all I/O devices for input

	CS-200�Computer Architecture�—�Part 2b. Processor, I/Os, and Exceptions�Inputs and Outputs
	The Five Classic Components of a Computer
	The CPU
	Physical Memory Map
	Connecting CPU and Memory
	The Five Classic Components of a Computer
	Input/Output Devices (I/Os)
	Accessing I/Os: Port Mapped I/O (PMIO)
	Accessing I/Os: Memory Mapped I/O (MMIO)
	Accessing I/Os: Memory Mapped I/O (MMIO)
	Example:�A/D Converter
	Example:�Simple Bus Interface
	Example: �Memory-Mapped Interface
	Slide Number 14
	Slide Number 15
	What Does /DTAC Mean?
	A/D Converter: Circuit
	Slide Number 18
	A/D Converter: Software
	What Do These Tristate Buffers Do?
	Your System in Lab B
	Programmed I/Os
	A Classic UART
	A Classic UART
	I/O Polling

