CS-200
Computer Architecture

Part 2b. Processor, 1/Os, and Exceptions
Inputs and Outputs

Paolo lenne

<paolo.ienne@epfl.ch>

The Five Classic Components of a Computer

Processor Interfaces

Control

The CPU

A “very” sequential component Signals like
(but from now on we may CE = Circuit Enable = address is valid
omit the clock in diagrams) WE = Write Enable = access is a store

\ Memory

interface

ctrl Single data bus

dd for read and write
J o
A (needs tristate!)

data <J

Physical Memory Map

0x00000000

Code
Data
0x80000000 RAM
RAM
Ox9FFFFFFF
0xA0000000 Stack

OxXFFFFFFFF

Connecting CPU and Memory

|

Ox9FFFFFFF

=1
_J

\

OX800A 78FA €

—\

bits 31..20
Z
7

//
bits 19..0 20

The Five Classic Components of a Computer

Processor Interfaces

Control

Input/Output Devices (1/0Os)

Human Interaction
Human Interaction
Generic
Generic
Generic
Generic
Generic
Storage
Storage
Networking
Networking
Networking
Displays
Displays
Optical Discs
Optical Discs
Optical Discs

Keyboard
Mouse
Serial Port (RS-232)
Parallel Port (LPT)
USB 4.0
Bluetooth 5.0
PCle 4.0
SATA Il (HDD/SSD)
NVMe (PCle 4.0)
Ethernet (10BASE-T)
10 Gigabit Ethernet (10GBASE-T)
Wi-Fi 6 (802.11ax)
VGA (analog video)
HDMI 2.1
CD-ROM
DVD-ROM
Blu-ray

~kbps
~kbps
115.2 kbps (max)
150 kbps
20-40 Gbps
2 Mbps
16 Gbps per lane
6.0 Gbps
64 Gbps (4-lane)
10 Mbps
10 Gbps
Up to 9.6 Gbps
0.6-1.5 Gbps (approx.)
48 Gbps
150 KB/s (1x) - 7.68 MB/s (52x)
1.32 MB/s (1x) - 21.1 MB/s (16x)
4.5 MB/s (1x) - 54 MB/s (12x)

Accessing 1/0s: Port Mapped 1/0 (PMIO)

* Create a new interface similar to the memory one

[New instructions (e.g., x86 but seldom used):\
ctrl-mem

IN register, port
addr OUT port, register

rdata
wdata _ e.g., IN AL, keyboard)

CE = Circuit Enable =
‘f port number is valid
ctrl-10 OE = Output Enable =

port P /O access is an output

32 \ Maybe not 32 bits for we

32 have only a few peripherals...

input
output

Accessing 1/0s: Memory Mapped I/0 (MMIO)

0x00000000
0x1000 0000
—~— —> | LeDs
0x1000 0010 - 2F | bl 4 T\
Sy No special hardware needed in the CPU
0x1000 0030 = >|_Buttons
X No special instructions needed:
lui tO, 0x10000 # pointer to I/Os
sw tl1, 0(te) # write LEDs
0x80000000 \lw t2, 0x30(t0) # read buttons /
RAM
Ox9FFFFFFF
0xA0000000
OXFFEFFEFFFF

Accessing 1/0s: Memory Mapped I/0 (MMIO)

LEDs Buttons
CPU Memory .
Register
Addr Data Ctrl Addr Data Ctrl En D
Write

> 0x8000 0000
= 0x1000 0000 _
< 0xA000 0000 m'fr%te 0x1000 0030

Example:
A/D Converter

e Signals:
— Start (START): input; when active begins a new conversion
— Data Valid (/DV): output; when active, D7—DO0 are valid
— Data (D7—D0): output; last conversion result

A/D Converter
START J_\ l

DV p—

———| START /DV \ /

D7-D0 p—r—

Result

DO-D7 ConversmnX

Example:
Simple Bus Interface

e Suppose that a 8-bit processor has the following signals:
— Address (A23—A0): output; address bus
— Data (D7—D0): input/output; data bus

— Address Strobe (/AS): output; signals the presence of a valid address on the
Address bus during a memory access cycle

— Read/Write (R//W): output; signal the direction of the data flow

— Data Acknowledge (/DTACK): input; must be activated at the end of a memory
access, when the written data have been latched or the read data are ready

e Similar but not identical to the MC68000

e Just an example but already more complex than busses described so far
(/DTACK)

Example:
Memory-Mapped Interface

* Connect the A/D converter described in the previous slide so that:

— Any access (R or W) to address OxFFFFF@ starts a new conversion
— The Data Valid signal can be read by the processor at address OxFFFFF4 (bit 0)
— The result of the conversion can be read by the processor at address OxFFFFF8

What does /DTAC mean?

Circuit

ck [\
/as |\

What Does /DTAC Mean?

L

[\

L

A

-

ADDR |

/DTACK

;
Y

/DTACK == ©

/DTACK == 1

Start
Memory
Access

ADDR € ALU res
JAS € 0

mem_type == 1

A/D Converter: Circuit

Data
Address

A/D Converler MCa38000
DV p—————————
START
D7-D0
IDTACK
:} =0xFFFFF4
q /AS
7 1" ® R/MW
D7-D0 A23-A0
=0xFFFFF0 =0xFFFFF8

Software

A/D Converter: Software

read_adc: lui
addi
Sw

poll: 1w
beqgz

end: 1w

ret

t1, Oxfff
t1, t1, oxffe
zero, 0(tl1)

to, 4(t1)
to, poll

a0, 8(t1)

+=+

tl = oxfffffo
start conversion

+=

+=+

t0 = DV signal
wait until done

+=+

a0 = A/D output

What Do These Tristate Buffers Do?

 What is their logic function?

A B If not controlled properly,

[we get short circuits! A B
s S l J
(> s

A sort of “decentralized” multiplexer

Your System in Lab B

en_buttons
en_7_seg_lcd N\
en_leds \
Decoder enram J/
120 120 120 32 10 8
addr en led_r led g led_b on disp en push switch
en clk clk clk
clk »| rst_n »l rst_n rst_n
we RAM ~Jwe LEDs o 7Seg LCD Buttons
addr wdata rdata waddr wdata waddr wdata addr rdata
clk 1) 4)
rst_n
I
L] clk we 5
rst_n addr -
wdata
CPU en_ ons
32 | ; 0 |
rdata K
1 |-

\ Exactly the same function as the tristate

buffers in the previous example

Programmed 1/Os

Many peripherals are more developed programmable systems and have a set of registers
which the processor reads and writes (a) to send and receive data and (b) to issue
commands and read the status

Memory bus

Control
A A A A 8
CPU Address o
>
Data Q
A A A g
Y Y <
Y V Y Y VYV VY ‘} L 2 Address decoders %
1/O interface 1/O interface I/O interface ‘ ‘[[' 'g
‘?‘ Y Y VL Y t "‘ Y @
i J In Ji Out I[Command‘ ’7 Status l %
Printer Keyboard Disk drive | ' o } °
Device interface registers o
A (]
Qo
£
3
Y .
5
o
I/O device S
(o)
(7]

A Classic UART

* UART = Universal Asynchronous Receiver-Transmitter

* One of the simplest and most common communication peripherals,
typically used today to connect terminals to embedded devices

* QOur UART has a simple programmed 1/0 interface with four registers:

— A control register for the processor to configure the UART
* Bit 7 must be set to 1 for the UART to be enabled
* Bits 2..0 configure the communication speed (e.g., 9b001 for 9600 baud)

— A status register for the processor to check the status of the UART
e Bit 1is 1 if there are data available

e BitOis 1if the UART is ready to send data
— A data input register where the received data are available to the processor

— A data output register where the processor places data to send

A Classic UART

UART_CTRL_ADDR = Ox10000000 # UART status register address
UART_ENABLE_BIT = Ox80 # Enable bit (bit 7)

UART_SPEED 9600 = 0x01 # Speed setting for 9600 baud (4 bits, [3:0])
UART_STATUS_ADDR = 0x10000004 # UART status register address

TX_READY_BIT = 0x01 # Transmitter ready bit (bit @)
UART_DATAIN_ADDR = 0x10000008 # UART data input (receive) register address
UART_DATAOUT_ADDR = ©x1000000C # UART data output (send) register address

send_string:

Conflgu re and enable the UART 1i t@, UART_CTRL_ADDR # Get UART control address
1i t1, UART_STATUS_ADDR # Get UART status address
1i t2, UART_DATAOUT_ADDR # Get UART data address
1i t3, UART_ENABLE_BIT # Get enable bit (0x80)
1i t4, UART_SPEED_9600 # Get speed setting (0x01)
or t4, t3, t4 # Combine enable and speed bits
. . sw t4, 0(te) # Configure using the UART control register
Wait until we can send
next_char:
d New CharaCter"' l1b t5, 0(a0) # Load first byte of the string
beqz t5, finish # If byte is zero (null terminator), finish
check_tx_ready:
lw t6, 0(t1) # Load UART status register
...and send it { andi t6, t6, TX_READY_BIT # Check if TX_READY_BIT is set
~—— beqz t6, check_tx_ready # If not ready, loop back and check again
9 sw t5, 0(t2) # Store the character in UART data register
addi a0, a0, 1 # Increment string pointer (move to next char)
Jj next_char # Jump back to send the next character

finish:
ret # Return when the string is done

1/0 Polling

* How do we know if a peripheral has data for us (key pressed, packet arrived, etc.)?

CPU €
! ! ! v v
/0 /O /0 /0 M
device | | device | | device | | device emory
Keep visiting regularly — %
all 1/0 devices for input <

* Very expensive: if the device is fast and requires immediate action, the processor
must spend too much time to check frequently

	CS-200�Computer Architecture�—�Part 2b. Processor, I/Os, and Exceptions�Inputs and Outputs
	The Five Classic Components of a Computer
	The CPU
	Physical Memory Map
	Connecting CPU and Memory
	The Five Classic Components of a Computer
	Input/Output Devices (I/Os)
	Accessing I/Os: Port Mapped I/O (PMIO)
	Accessing I/Os: Memory Mapped I/O (MMIO)
	Accessing I/Os: Memory Mapped I/O (MMIO)
	Example:�A/D Converter
	Example:�Simple Bus Interface
	Example: �Memory-Mapped Interface
	Slide Number 14
	Slide Number 15
	What Does /DTAC Mean?
	A/D Converter: Circuit
	Slide Number 18
	A/D Converter: Software
	What Do These Tristate Buffers Do?
	Your System in Lab B
	Programmed I/Os
	A Classic UART
	A Classic UART
	I/O Polling

